

Open Infrastructure in action: the PID Graph

Gabriela Mejias

14 November 2022 EOSC Symposium 2022

PIDs for places, people, and things

PIDs for people (researchers) include ISNIs and ORCID iDs

https://orcid.org/0000-0001-6622-4910

PIDs for institutions (research organizations) including ROR

https://ror.org/01y2jtd41

PIDs for things (research outputs) include DOIs, handles, IGSNs, ARKs, and more

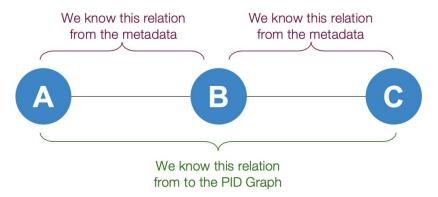
https://doi.org/10.5061/dryad.708gr

FAIR principles."

"....PIDs (and the associated metadata) are an

essential component for the implementation of the

Research is already a graph


The PID Graph

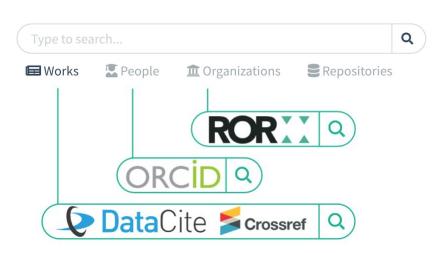
Having unique persistent identifiers for researchers and their outputs is crucial to connecting pieces of the research landscape together.

PIDs already have the potential to enable the connected research graph, but we're not yet taking full advantage of their connecting powers.

We can now clearly link PIDs together via relations in their metadata to enable the discovery of connections at least two "hops" away

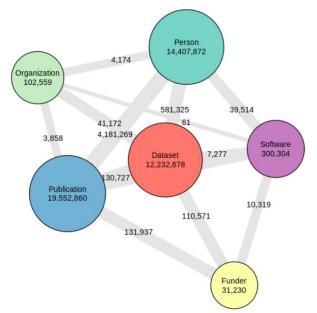
Citations

References


Relations

IsContinuedBy Continues IsDescribedBy Describes HasMetadata IsMetadataFor HasVersion IsVersionOf IsNewVersionOf IsPreviousVersionOf **IsPartOf** HasPart IsDocumentedBy Documents IsCompiledBy Compiles IsVariantFormOf IsOriginalFormOf IsIdenticalTo IsReviewedBy Reviews IsDerivedFrom IsSourceOf IsRequiredBy Requires IsObsoletedBy Obsoletes

Find and Connect Research



Find Research with DataCite Commons

PID Graph

Number of nodes and connections (August 2022)

Search for a dataset

DataCite Commons

		■ Wo
		2 W
Publication Year		Data
□ 2012 Work Type	2	stru spe Kato
☐ Dataset ☐ Text	1	Matin frequ repea fecun
License		synch matir
□ CC0-1.0	1	appa SSR le indica
		patte
☐ English	1	and t
Registration Agency		@(
☐ Crossref ☐ DataCite	1 1	66 1 0
_		Dan

comparativ	ve analysis of t	he S-locus and nuclear SSR	× Q	Pages -	Support	→ Sign In
⊞ Works	People	① Organizations				

orks

a from: Impact of negative frequency-dependent selection on mating pattern and genetic acture: a comparative analysis of the S-locus and nuclear SSR loci in Prunus lannesiana var. ciosa

Shuri, Teruyoshi Nagamitsu, Hiroyoshi Iwata, Yoshihiko Tsumura, Yuzuru Mukai, K Michiharu. K Saika & K Junko on 1 of Dataset published 2012 in DRYAD

ng processes of local demes and spatial genetic structure of island populations at the self-incompatibility (S-) locus under negative iency-dependent selection (NFDS) were evaluated in Prunus lannesiana var. speciosa in comparison with nuclear simple sequence at (SSR) loci that seemed to be evolutionarily neutral. Our observations of local mating patterns indicated that male-female pair ndity was influenced by not only self-incompatibility, but also various factors such as kinship, pollen production and flowering hrony. In spite of the mating bias caused by these factors, the NFDS effect on changes in allele frequencies from potential mates to ng pollen was detected at the S-locus but not at the SSR loci although the changes from adult to juvenile cohorts were not rent at any loci. Genetic differentiation and isolation-by-distance over various spatial scales were smaller at the S-locus than at the oci, as expected under the NFDS. All ele sharing distributions among the populations also had a unimodal pattern at the S-locus, ating the NFDS effect except for alleles unique to individual populations probably due to isolation among islands, although this rn was not exhibited by the SSR loci. Our results suggest that the NFDS at the S-locus has an impact on both the mating patterns the genetic structure in the P. lannesiana populations studied.

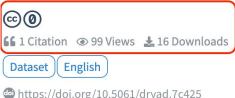
egistered April 17, 2012 via DataCite.

Citation • 103 Views 16 Downloads

aset | English

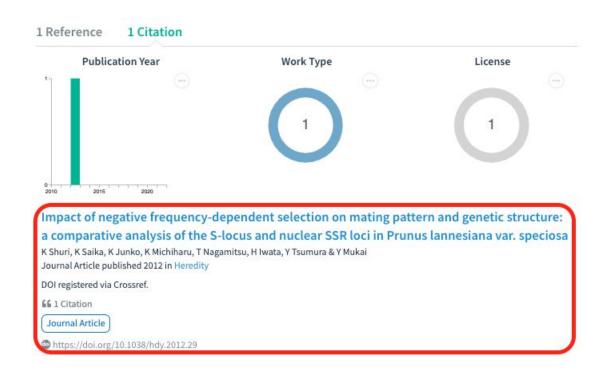
4 https://doi.org/10.5061/dryad.7c425

Cited dataset



Data from: Impact of negative frequency-dependent selection on mating pattern and genetic structure: a comparative analysis of the S-locus and nuclear SSR loci in Prunus lannesiana var. speciosa

Kato Shuri, Teruyoshi Nagamitsu, Hiroyoshi Iwata, Yoshihiko Tsumura, Yuzuru Mukai, K Michiharu, K Saika & K Junko Version 1 of Dataset published 2012 in DRYAD


Mating processes of local demes and spatial genetic structure of island populations at the self-incompatibility (S-) locus under negative frequency-dependent selection (NFDS) were evaluated in Prunus lannesiana var. speciosa in comparison with nuclear simple sequence repeat (SSR) loci that seemed to be evolutionarily neutral. Our observations of local mating patterns indicated that male-female pair fecundity was influenced by not only self-incompatibility, but also various factors such as kinship, pollen production and flowering synchrony. In spite of the mating bias caused by these factors, the NFDS effect on changes in allele frequencies from potential mates to mating pollen was detected at the S-locus but not at the SSR loci although the changes from adult to juvenile cohorts were not apparent at any loci. Genetic differentiation and isolation-by-distance over various spatial scales were smaller at the S-locus than at the SSR loci, as expected under the NFDS. All ele sharing distributions among the populations also had a unimodal pattern at the S-locus, indicating the NFDS effect except for alleles unique to individual populations probably due to isolation among islands, although this pattern was not exhibited by the SSR loci. Our results suggest that the NFDS at the S-locus has an impact on both the mating patterns and the genetic structure in the P. lannesiana populations studied.

DOI registered April 17, 2012 via DataCite.

Surfacing the citation

Supporting recognition

Creators

Kato Shuri

Forestry and Forest Products Research Institute

Yoshihiko Tsumura

Forestry and Forest Products Research Institute

K Saika

Tokyo Institute of Technology

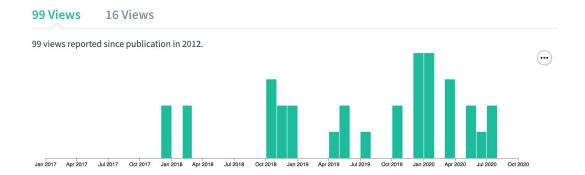
Teruyoshi Nagamitsu

Forestry and Forest Products Research Institute

Yuzuru Mukai

Gifu University

K Junko

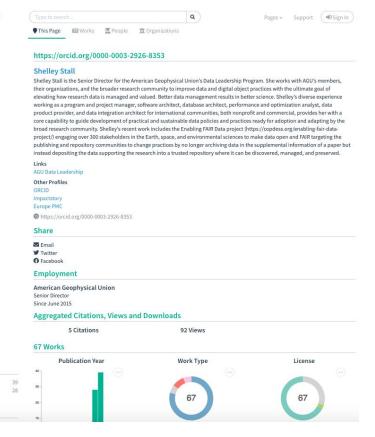

Gunma University

Hiroyoshi Iwata

University of Tokyo

K Michiharu

Kyoto University


Leveraging ORCID iDs

DataCite Commons

Publication Year

Work Type

Leveraging citations & usage

DataCite Commons	fundingReferences.awardNumber:777523	× Q	Pages - Support → Sign In			
	● This Page ■ Works ■ People	(Conganizations				
	https://ror.org/00k4n6c32					
	European Commission					
	Founded 1958					
	Links Other Iden Homepage GRID grid.2 Wikipedia Crossref Fu					
	Twitter	Crossref Funder ID 10.13039/501100000893 Crossref Funder ID 10.13039/501100000891 Crossref Funder ID 10.13039/501100000894 Crossref Funder ID 10.13039/501100000887 Wikidata Q8880				
	Geolocation Wikidata Q20855594 50°50°37" N, 4°22'58" W					
	Belgium Government Phttps://ror.org/00k4n6c32					
	Share					
	➤ Email ✓ Twitter → Facebook					
	Aggregated Citations, Views and Downloads					
	65,918 Citations	30,215 Views	169 Downloads			
	167 Works					
	Publication Year	Work Type	License			
Publication Year	80-	-				
□ 2021 14		1				
2020 88	60 -	107	107			
2019 62	40-	167	167			
□ 2018 2 □ 2005 1	· ·					
LI 2003 1	20-					
Work Type	2010 2015 2020					

EOSC PID Graph

Services for providing access to the PID Graph, which is made up of links and records gathered from persistent identifier (PID) authority data sources. PID metadata access APIs, software components supporting Open Science graph interoperability (sharing of graph data), and extension of the authoritative sources enabling links between PID entities are some of the services that will be provided.

Join us!

http://commons.datacite.org/

CONNECTING RESEARCH, IDENTIFYING KNOWLEDGE

info@datacite.org

pidforum.org

<u>datacite.org</u> <u>blog.datacite.org</u>

support.datacite.org
support@datacite.org

@datacite

DataCite

@datacite