

Demonstration: Dark Matter Test Science Project

Mikhail Smirnov (FAU, ECAP), Lukas Heinrich (TUM)

EOSC Symposium

The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020, Grant Agreement 101017536

The Scientific case in a nutshell - Dark Matter

We are completely in the dark about 85% of the matter in the universe: **Dark Matter!**

We know it's there, we do not know **what** it is

Where and How to find Dark Matter

Dark Matter is a **multi-disciplinary science driver** across astronomy and physics

Direct Production

Create Dark Matter in the Particle Collisions

Direct Detection

Observe DM Interactions with Standard Matter

Indirect Detection

Observe Remnants of Dark Matter interactions

Where and How to find Dark Matter

Efforts to find **Dark Matter** are some of the most complex experiments worldwide

The Experiments at Large Hadron Collider (LHC) at CERN

eoscfuture.eu 🕥@EOSCFuture in EOSCfuture

EOSC Future

Efforts to find **Dark Matter** require some of the most complex experiments worldwide

Neutrino and Gamma-Ray Telescopes (in the ocean, in the ice and in space)

Where and How to find Dark Matter

Efforts to find **Dark Matter** require some of the most complex experiments worldwide

Direct Detection Experiments In Cavern deep underground.

Where and How to find Dark Matter

Cutting edge dark matter experiments are increasingly unique

- large, complex, costly experiments at the exascale
- only one or a few experiments of each type worldwide

Maximising each experiment's science outputs is imperative:

- create and store new analyses, datasets and results
- **combine** multiple results studying the same question
- reinterpret existing studies for new questions

Implies complex infrastructure requirements for science platforms

• Partner with EOSC to build tools for the scientific community learn the most about Dark Matter from all available angles.

7

- Many experiments are coming online unprecedented level of sensitivity.
- If there is something to find, signs would accumulate across different science domains

A possible Scenario

- Many experiments are coming online unprecedented level of sensitivity.
- If there is something to find, signs would accumulate across different science domains

A possible Dark Matter timeline

- Many experiments are coming online unprecedented level of sensitivity.
- If there is something to find, signs would accumulate across different science domains

A possible Dark Matter timeline

- Many experiments are coming online unprecedented level of sensitivity.
- If there is something to find, signs would accumulate across different science domains

A possible Scenario

A possible Dark Matter timeline

and open computing and data infrastructure

- Many experiments are coming online unprecedented level of sensitivity.
- If there is something to find, signs would accumulate across different science domains

A possible Scenario

12

eoscfuture.eu

@EOSCFuture

EOSC Future

EOSCfuture

The Dark Matter Test Science Project

As part of **EOSC-Future** we build a integrative platform to develop an understanding of the key computing and data challenges for Dark Matter:

- Provide EOSC with input: which services and infrastructure do we need to build for high-impact open science
- Build prototype infrastructure: enables unified view across domains with experiments from each major field

Direct Detection: DarkSide

...and their evolutions: DarkSide-20k / Argo, ATLAS @ HL-LHC, CTA Some of the analysis & ML tools necessary for these evolutions are also part of this Science Project

Colliders: ATLAS Experiment

13

Indirect Detection: Fermi & KM3NeT

The Dark Matter Test Science Project

Science output of the Dark Matter TSP

- Individual results from participating experiments
- Summary Results to showcase complementarity of participating experiments
- Possible: Combination of Results [looking for personpower]

Data and Software

- Data deposited on the ESCAPE Data Lake
- Software and Software pipelines archived on ESCAPE Software Catalogue
- Should be ready for reusing / reproducing

Example sketch (not using ESCAPE experiments yet) highlighting direct detection, neutrino experiment indirect detection and collider complementarity

VRE – online platform for doing research in framework of EOSC Future Science Projects

Core Component of the DM TSP is the Virtual Research Environment

VRE gives access to researchers from all institutions using EOSC federated identity AAI

- Common experience independent of Researches science domain
- Integration with Institutional and VO Authentication mechanisms

JupyterHub provides a familiar & common UI

- Curated list of reproducible software Environment for each science domains
- Entrypoint for exploratory data analysis and visualization
- Client tools for scale-out systems (e.g. batch) for larger workloads

The ESCAPE Data Lake as a cervice integrated into the Jupyter UI of the VRE

- Based on Rucio, exascale-ready distributed storage system
- Policy-based access to Data
- Easy discovery of datasets from all participating experiments
- Direct attachment to the research workflow

The VRE integrates with REANA

- Scale beyond single notebook
- Run reproducible / reusable declarative containerized pipelines as a service
- Variety of workflow structures used in science domains (Serial, Snakemake, CWL, yadage)
- Complete deployment at CERN and CNAF resources (EOSC)

https://reanahub.io/

The demo

Thank you for your attention

The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020, Grant Agreement 101017536

Backup

Scientific case

Technical requirements

- Interactive Entrypoint
- Scale-out Systems for large-scale workloads
- Large-Scale Storage with
- Support large dynamic range in Workloads (from single notebooks to O(100 TB) workflows
- Cross-Experiment Authentication (-> IAM)
- ...

EOSC as enabler (added value)

EOSC Future

@EOSCFuture in EOSCfuture

- Data Lake
- CNAF Resources

eoscfuture.eu

- IAM
- Help

Impact

- Expose state of the art Dark Matter workflows semi-publicly
- ...

Scientific platform – Integration with EOSC

EOSC Future contributors: Add list of EOSC Future tasks that contributed to the work

eoscfuture.eu

EUSC Future

@EOSCFuture

EOSCfuture

[Include a workflow of what will be presented – step by step]

27

Q&A – Demonstration: *Scientific demonstration*

EOSC Symposium

The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020, Grant Agreement 101017536