Integration of Research software into the EOSC infrastructure

Lessons learned from Computer science

/whoami

Mohammad Reza Saleh Sedghpour Dpt. Computing science, Umeå University msaleh@cs.umu.se Twitter: @sedghpour

Sanna Isabel Ulfsparre Umeå University Library sanna.isabel.ulfsparre@umu.se www.umu.se/personal/sanna-isabel-ulfsparre/

Research software (RS) in EOSC

EOSC infrastructure need to:

- include RS to fulfill the FAIR and the FAIR4RS principles
- support sharing, collaborating, evaluating, reproducing, reusing and preserving software
- have a research domain neutral core of standards.

Transparency in research and research-related practices

Rigor, credibility and validity

For qualitative research, it is important to have transparency to:

- show that conclusions and analysis are justifiable
- make it possible to discuss uncouncious biases and ethical issues
- show a clear relationship between data, theory and method, as well as rigour in the execution.

How do you define "Reproducibility"?

www.menti.com Code: 67 80 83 6

Reproducibility

Reproducibility is the procedure of **independent**

confirmation of a scientific hypothesis by another team.

(Vitek and Kalibera 2011)

How do you define "Repeatability"?

www.menti.com Code: 67 80 83 6

Repeatability

The ability to re-run the exact **same experiment** with the **same**

procedure on the same or comparable system and receive

the **same or very similar result** is referred to as

repeatability.

(Vitek and Kalibera 2011)

Distributed Systems Research

Is the current research repeatable and reproducable?

www.menti.com Code:67 80 83 6

Reproducibility crisis

In a survey published 2016, 90% of researchers answered that there was a **slight** or a **significant** reproducibility crisis.

(Baker, Science 2016)

"[...] the scientific community was shaken by reports that a troubling proportion of peer-reviewed preclinical studies are not reproducible."

(McNutt, Nature 2014)

Conclusion:

EOSC need to support RS in order to support reproducibility, repeatability and validation of qualitative processes.

Questions during the presentation

www.menti.com Code: 67 80 83 6

EOSC for RS

- Share
- Collaborate
- Evaluate
- Reproduce, repeat and validate
- Re-use
- Preserve

EOSC for **RS**

- Share
- Collaborate
- Evaluate
- Reproduce, repeat and validate
- Re-use
- Preserve

EOSC for **RS**

- Share
- Collaborate
- Evaluate
- Reproduce, repeat and validate
- Re-use
- Preserve

Integration of Computer science practices

Generalisation of existing practices for:

- Open source communities
- Infrastructures and features
- Evaluation and quality control
- Scolarly communication practices

The badging system

* Association for Computing Machinery

Timeline for artifact evaluation in distributed systems

(Saleh Sedghpour, M.R; Klein, C.; Papadopoulos, A.V. *et al.* Est. 2023.)

The study

- ACM Digital Library
- IEEE Xplore
- WikiCFP
- Researchr

No	Keyword
1	Distributed Systems
2	Cloud Computing
3	Edge Computing
4	FogComputing
5	Serverless Computing
6	Service-Oriented Architectures
7	Microservices

The study: Process

Conference Name	Years	
ASPLOS	2022,2021,2020	
CF	2020	
CoNEXT	2022,2021,2020	
ESEC/FSE	2021,2020	
EuroSys	2022,2021	
ICPE	2022,2021,2020	
ICSE	2022,2021,2020	

Conference Name	Years
MICRO	2021
Middleware	2022,2021,2020
SC	2022,2021,2020
SOSP	2021
PPoPP	2022,2021,2020
UCC	2021

Extracting best practices

 Extract conferences employing Artifact Evaluation process

- Extract best practices for:
- Researchers
- Reviewers
- Community
- Funding agencies, repositories, policy makers, and publishers
- HEI:s
- Training and research support

Introduction	Archival Repository (DOI)	Algorithms
--------------	---------------------------------	------------

Introduction Archival (DOI)	Algorithms	Required Resources
--------------------------------	------------	-----------------------

Introduction	Archival Repository (DOI)	Algorithms	Required Resources
Inputs			

Introduction	Archival Repository (DOI)	Algorithms	Required Resources
Inputs	Run-Time States		

Introduction	Archival Repository (DOI)	Algorithms	Required Resources
Inputs	Run-Time States	Problem Dimensions	

Introduction	Archival Repository (DOI)	Algorithms	Required Resources
Inputs	Run-Time States	Problem Dimensions	Metrics

Introduction	Archival Repository (DOI)	Algorithms	Required Resources
Inputs	Run-Time States	Problem Dimensions	Metrics
Planning			

Introduction	Archival Repository (DOI)	Algorithms	Required Resources
Inputs	Run-Time States	Problem Dimensions	Metrics
Planning	Expected Outputs		

Introduction	Archival Repository (DOI)	Algorithms	Required Resources
Inputs	Run-Time States	Problem Dimensions	Metrics
Planning	Expected Outputs	Sample Data	

Introduction	Archival Repository (DOI)	Algorithms	Required Resources
Inputs	Run-Time Problem States Dimensions		Metrics
Planning	Expected Outputs	Sample Data	Licenses

Introduction	Archival Repository (DOI)	Algorithms	Required Resources	Programs
Inputs	Run-Time States	Problem Dimensions	Metrics	
Planning	Expected Outputs	Sample Data	Licenses	

Introduction	Archival Repository (DOI)	Algorithms	Required Resources	Programs	Experiment
Inputs	Run-Time States	Problem Dimensions	Metrics		
Planning	Expected Outputs	Sample Data	Licenses		

Introduction	Archival Repository (DOI)	Algorithms	Required Resources	Programs	Experiment
Inputs	Run-Time States	Problem Dimensions	Metrics	Source Control	
Planning	Expected Outputs	Sample Data	Licenses		

Introduction	Archival Repository (DOI)	Algorithms	Required Resources	Programs	Experiment
Inputs	Run-Time States	Problem Dimensions	Metrics	Source Control	Automation
Planning	Expected Outputs	Sample Data	Licenses		

Introduction	Archival Repository (DOI)	Algorithms	Required Resources	Programs	Experiment
Inputs	Run-Time States	Problem Dimensions	Metrics	Source Control	Automation
Planning	Expected Outputs	Sample Data	Licenses	Test Driven Developing	

Introduction	Archival Repository (DOI)	Algorithms	Required Resources	Programs	Experiment
Inputs	Run-Time States	Problem Dimensions	Planning	Source Control	Automation
Metrics	Expected Outputs	Sample Data	Licenses	Test Driven Developing	Public Cloud

Metadata describing software				Software	
Introduction	Archival Repository (DOI)	Algorithms	Required Resources	Programs	Experiment
Inputs	Run-Time States	Problem Dimensions	Metrics	Source Control	Automation
Planning	Expected Outputs	Sample Data	Licenses	Test Driven Developing	Public Cloud

Providing guidelines and checklists

Communications between reviewers should be facilitated and encouraged

Providing	guidelines	and	checklists
-----------	------------	-----	------------

Communications between reviewers should be facilitated and encouraged

Access to a public cloud, such as EOSC

Research and discussions on best practices

Research and discussions on best practices

Encouragement of and engagement in research software reviews

Research and discussions on best practices

Encouragement of and engagement in research software reviews

Evaluation of new ideas and methods, such as crowd-sourcing and citizen science

Research and discussions on best practices

Encouragement of and engagement in research software reviews

Evaluation of new ideas and methods, such as crowd-sourcing and citizen science

††††

Inter-disciplinary working groups for research software practices

Research and discussions on best practices

Encouragement of and engagement in research software reviews

Evaluation of new ideas and methods, such as crowd-sourcing and citizen science

iiii Inter-disciplinary working groups for research software practices

Support and exploration of practices that follow the FAIR principles

 ✓ FAIR research software practices should be embedded in policy and funding requirements.

- ✓ FAIR research software practices should be embedded in policy and funding requirements.
- ✓ Generous metadata describing software should be expected.

- ✓ FAIR research software practices should be embedded in policy and funding requirements.
- ✓ Generous metadata describing software should be expected.
- ✓ Access to research software should be encouraged "as openly as possible, as restricted as necessary".

- ✓ FAIR research software practices should be embedded in policy and funding requirements.
- ✓ Generous metadata describing software should be expected.
- ✓ Access to research software should be encouraged "as openly as possible, as restricted as necessary".
- ✓ Research on open science and practices for reproducibility should be supported and funded.

- ✓ FAIR research software practices should be embedded in policy and funding requirements.
- ✓ Generous metadata describing software should be expected.
- ✓ Access to research software should be encouraged "as openly as possible, as restricted as necessary".
- ✓ Research on open science and practices for reproducibility should be supported and funded.
- ✓ There should be badging system for software quality that is controlled centrally by an entity such as EOSC.

• Basic programming and "Clean code"

- Basic programming and "Clean code"
- Development methods:
 - o Design patterns
 - Automation
 - \circ Test driven development

- Basic programming and "Clean code"
- Development methods:
 - o Design patterns
 - Automation
 - o Test driven development
- Iterative thinking

- Basic programming and "Clean code"
- Development methods:
 - o Design patterns
 - Automation
 - o Test driven development
- Iterative thinking
- Use of infrastructures

- Basic programming and "Clean code"
- Development methods:
 - o Design patterns
 - Automation
 - o Test driven development
- Iterative thinking
- Use of infrastructures
- Research software in Open science and Scholarly communication

- Basic programming and "Clean code"
- Development methods:
 - Design patterns
 - Automation
 - o Test driven development
- Iterative thinking
- Use of infrastructures
- Research software in Open science and Scholarly communication
- Legal training and support

References

Wilkinson, M.; Dumontier, M.; Aalbersberg, I. *et al.* 2016. The FAIR Guiding Principles for scientific data management and stewardship. *Scientific Data* 3(160018). DOI: <u>10.1038/sdata.2016.18</u>

Barker, M.; Chue Hong, N.P.; Katz, D.S. *et al.* 2022. Introducing the FAIR Principles for research software. *Scientific Data* 9(622). DOI: <u>10.1038/s41597-022-01710-x</u>

Vitek, J. and Kalibera T. 2011. Repeatability, reproducibility and rigor in systems research. *9th ACM International Conference on Embedded Software (EMSOFT)*. Taipei, Taiwan October 9-14 DOI: <u>10.1145/2038642.2038650</u>

McNutt, M. 2014. Reproducibility. Science. 343(6168). DOI: 10.1126/science.1250475

Baker, M. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533: 452-454. DOI: 10.1038/533452a

Saleh Sedghpour, M.R; Klein, C.; Papadopoulos, A.V. et al. Estimated publishing 2023. Title TBD.

Mohammad Reza Saleh Sedghpour Sanna Isabel Ulfsparre

UMEÅ UNIVERSITY

