

### Easy quantum resource access for EOSC users

Zoltán Farkas, SZTAKI

zfarkas@sztaki.hu

**EOSC Symposium - 17.11.2022** 



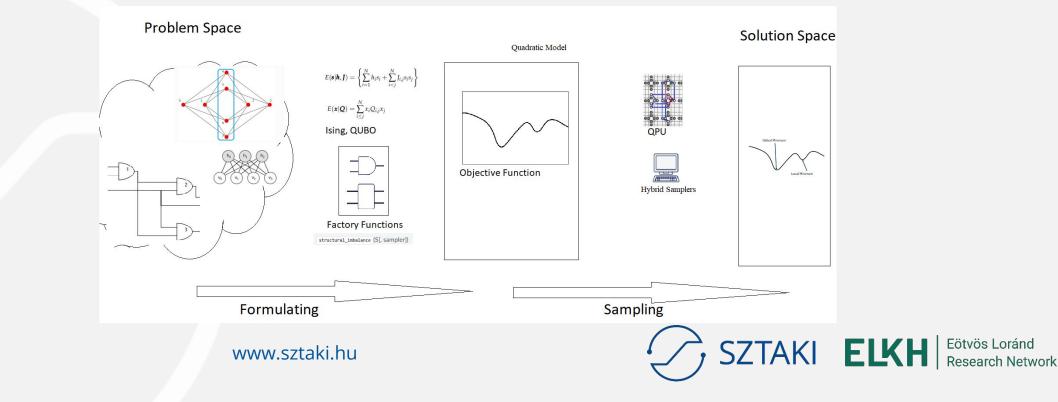
### Outline

- Quantum computing problems
- Available hardware
- Programming SDKs, Frameworks
- Reference Architecture for cloud users
- EGI Notebook service integration



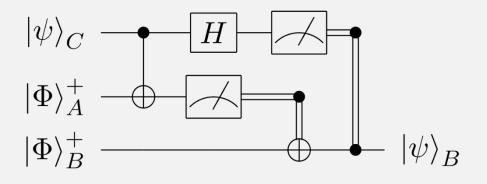
### **Quantum computing problems**

- In traditional computing functions are created to perform some sort of calculation, which is translated to CPU code to alter the registers of the CPU and the content of the memory
- Quantum computing follows different paradigms:
  - Quantum annealing problem solving (e.g. D-Wave)
  - Quantum circuits, based on quantum gates (e.g. lonQ),









### **Quantum annealing: D-Wave approach**

- Instead of solving a problem programmatically, we are defining an objective function for the problem in an adequate format, where the global minimum of the function represents the best solution for the problem
- Use the quantum hardware to find a global minimum for the objective function through sampling/solving
- <u>https://docs.ocean.dwavesys.com/en/stable/overview/solving\_problems.html</u>



### **Quantum circuits**

- Qiskit definition: "A quantum circuit is a computational routine consisting of coherent quantum operations on quantum data, such as qubits, and concurrent real-time classical computation. It is an ordered sequence of quantum gates, measurements and resets, all of which may be conditioned on and use data from the real-time classical computation."
- Implementations:
  - IonQ
  - Rigetti
  - Oxford Quantum Circuits
  - IBM
  - Google











### **Quantum hardware providers**

# D:WJVG

The Quantum Computing Company™

- D-Wave: •
  - Annealing systems
  - Provided through D-Wave Leap
  - Simulator available
- Amazon Braket:
  - Annealing systems: D-Wave •
  - Gate-based systems: IonQ, Rigetti, Oxford Quantum Circuits •
  - Simulator available for gate-based systems
- IBM:
  - Gate-based systems •
  - Simulator available •
- Azure:
  - Gate-based systems: IonQ, Rigetti, Oxford Quantum Circuits •
  - Simulator available
- Google

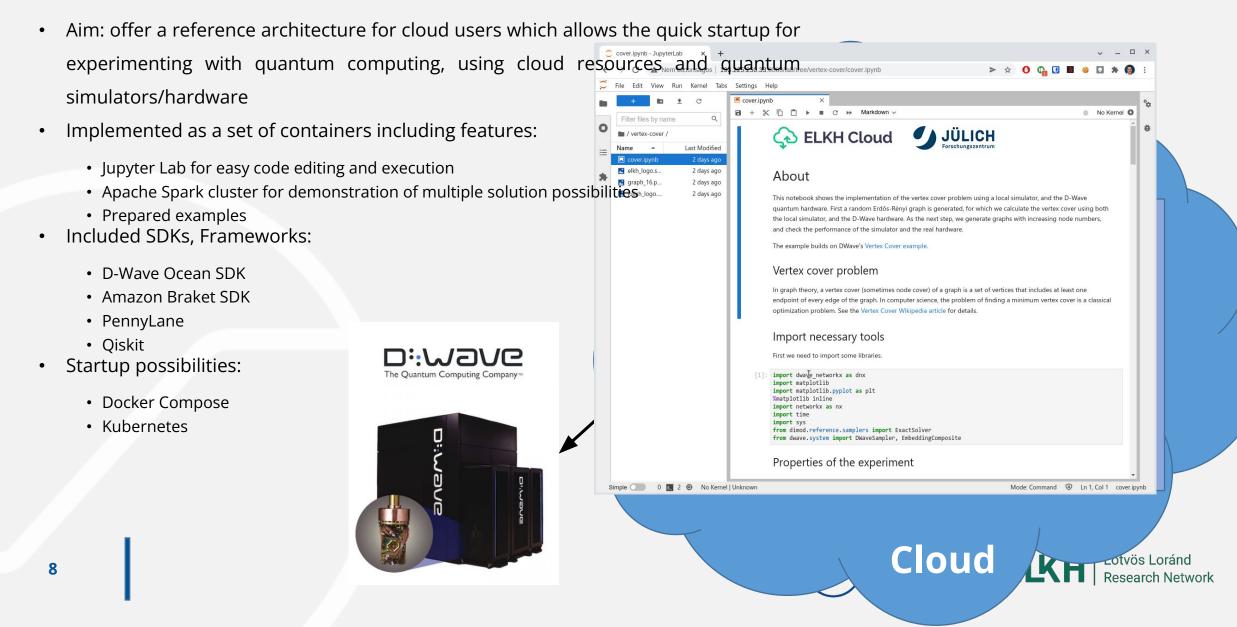






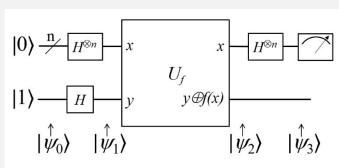


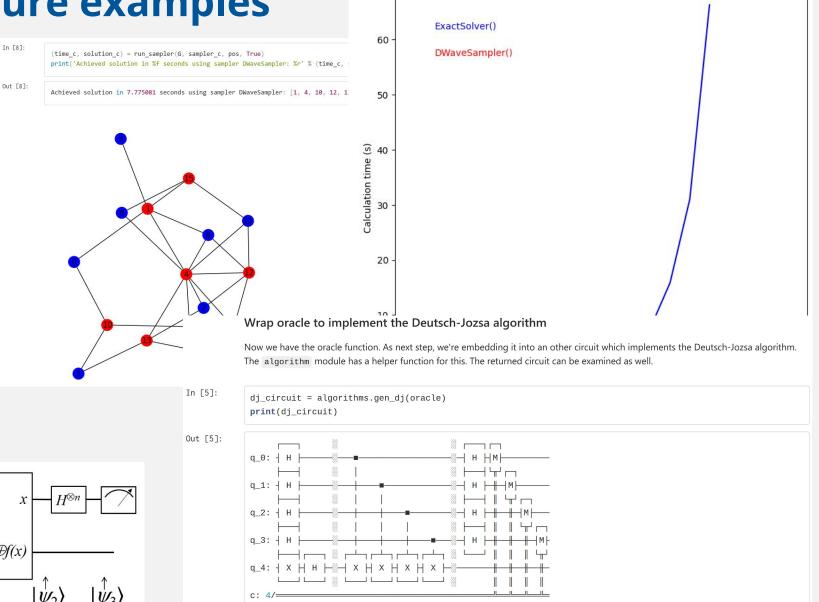
### www.sztaki.hu


- Providers offer their SDKs for easy access:
  - D-Wave: Ocean SDK (Python)
  - Amazon: AWS Braket SDK (Python)
  - IBM: Qiskit (Python)
  - Azure: Quantum Development Kit (Q#, Qiskit, Cirq)
  - Google: Cirq (Python)
- Frameworks enabling the adaptation of quantum paradigm:
  - PennyLane: Differentiable programming, Machine learning, Quantum chemistry
  - Qiskit: Machine learning, Finance, Optimization, Nature
  - Strawberry Fields: Graph algorithms, Machine learning, Chemistry



SZTAKI


ELKH

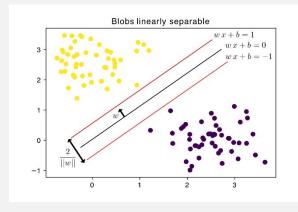

### **QuickStart reference architecture for cloud users**



## **Reference Architecture examples**

- A set of examples are offered
- For D-Wave resources:
  - Minimum vertex cover
  - Point clustering
  - EV charger placement
  - Logic gate simulation
  - Quadratic Model examples
- Using IBM Qiskit:
  - Deutsch-Jozsa algorithm






0 1 2 3

### Usage, exploitation possibilities

- Offered for interested ELKH Cloud users
- Experiment with manufacturing-related problems in the CO-VERSATILE project, and Hungarian TKP NKTA programs
- Implement Quantum Support Vector Machine algorithms inside the Hungarian Artificial Intelligence National Laboratory (MILAB)





Elk



## **EGI Notebook service integration**

- A browser-based tool for interactive analysis of data using EGI storage and compute services
- Accessible through <a href="https://notebooks.egi.eu/hub/login">https://notebooks.egi.eu/hub/login</a>
- Adding quantum resource access to EGI Notebooks:
  - Ongoing work
  - SDKs and frameworks offered by the quantum reference architecture will be included
  - Examples downloaded on demand
- Results:
  - Quantum resources will be accessible for EOSC users
  - Local simulators usable right from within the Notebook server started for a user
  - External access credentials are still required to compute using real quantum hardware

| $\bigcirc$ |
|------------|
| _          |



### **Interested?**

• Check out the reference architecture, try it for yourself:

https://git.sztaki.hu/science-cloud/reference-architectures/quantum

- If you have a fitting problem, don't hesitate to contact!
- Any feedback welcome:

Zoltán Farkas, SZTAKI <u>zfarkas@sztaki.hu</u>



### **THANK YOU FOR YOUR ATTENTION!**

www.sztaki.hu

